When the downward-moving slab reaches a depth of about 100 km (60 miles), it gets sufficiently warm to drive off its most volatile components, thereby stimulating partial melting of mantle in the plate above the subduction zone (known as the mantle wedge). Melting in the mantle wedge produces magma, which is predominantly basaltic in composition. This magma rises to the surface and gives birth to a line of volcanoes in the overriding plate, known as a volcanic arc, typically a few hundred kilometres behind the oceanic trench. The distance between the trench and the arc, known as the arc-trench gap, depends on the angle of subduction. Steeper subduction zones have relatively narrow arc-trench gaps. A basin may form within this region, known as a fore-arc basin, and may be filled with sediments derived from the volcanic arc or with remains of oceanic crust.

You are watching: How are continental rift magmas and continental arc magmas different?

If both plates are oceanic, as in the western Pacific Ocean, the volcanoes form a curved line of islands, known as an island arc, that is parallel to the trench, as in the case of the Mariana Islands and the adjacent Mariana Trench. If one plate is continental, the volcanoes form inland, as they do in the Andes of western South America. Though the process of magma generation is similar, the ascending magma may change its composition as it rises through the thick lid of continental crust, or it may provide sufficient heat to melt the crust. In either case, the composition of the volcanic mountains formed tends to be more silicon-rich and iron- and magnesium-poor relative to the volcanic rocks produced by ocean-ocean convergence.


sea anchor process in back-arc basin formation
The slab “sea anchor” process of back-arc basin formation.
Encyclopædia bromheads.tv, Inc.

Mountain building

If the rate of subduction in an ocean basin exceeds the rate at which the crust is formed at oceanic ridges, a convergent margin forms as the ocean initially contracts. This process can lead to collision between the approaching continents, which eventually terminates subduction. Mountain building can occur in a number of ways at a convergent margin: mountains may rise as a consequence of the subduction process itself, by the accretion of small crustal fragments (which, along with linear island chains and oceanic ridges, are known as terranes), or by the collision of two large continents.

Many mountain belts were developed by a combination of these processes. For example, the Cordilleran mountain belt of North America—which includes the Rocky Mountains as well as the Cascades, the Sierra Nevada, and other mountain ranges near the Pacific coast—developed by a combination of subduction and terrane accretion. As continental collisions are usually preceded by a long history of subduction and terrane accretion, many mountain belts record all three processes. Over the past 70 million years the subduction of the Neo-Tethys Sea, a wedge-shaped body of water that was located between Gondwana and Laurasia, led to the accretion of terranes along the margins of Laurasia, followed by continental collisions beginning about 30 million years ago between Africa and Europe and between India and Asia. These collisions culminated in the formation of the Alps and the Himalayas.


The broad, gentle pitch of the continental shelf gives way to the relatively steep continental slope. The more gradual transition to the abyssal plain is a sediment-filled region called the continental rise. The continental shelf, slope, and rise are collectively called the continental margin.

During these accretionary events, small sections of the oceanic crust may break away from the subducting slab as it descends. Instead of being subducted, these slices are thrust over the overriding plate and are said to be obducted. Where this occurs, rare slices of ocean crust, known as ophiolites, are preserved on land. They provide a valuable natural laboratory for studying the composition and character of the oceanic crust and the mechanisms of their emplacement and preservation on land. A classic example is the Coast Range ophiolite of California, which is one of the most extensive ophiolite terranes in North America. These ophiolite deposits run from the Klamath Mountains in northern California southward to the Diablo Range in central California. This oceanic crust likely formed during the middle of the Jurassic Period, roughly 170 million years ago, in an extensional regime within either a back-arc or a forearc basin. In the late Mesozoic, it was accreted to the western North American continental margin.

Because preservation of oceanic crust is rare, the recognition of ophiolite complexes is very important in tectonic analyses. Until the mid-1980s, ophiolites were thought to represent vestiges of the main oceanic tract, but geochemical analyses have clearly indicated that most ophiolites form near volcanic arcs, such as in back-arc basins characterized by subduction roll-back (the collapse of the subducting plate that causes the extension of the overlying plate). The recognition of ophiolite complexes is very important in tectonic analysis, because they provide insights into the generation of magmatism in oceanic domains, as well as their complex relationships with subduction processes. (See above back-arc basins.)

Mountains by continental collision

Continental collision involves the forced convergence of two buoyant plate margins that results in neither continent being subducted to any appreciable extent. A complex sequence of events ensues that compels one continent to override the other. These processes result in crustal thickening and intense deformation that forces the crust skyward to form huge mountains with crustal roots that extend as deep as 80 km (about 50 miles) relative to Earth’s surface, in accordance with the principles of isostasy.

The subducted slab still has a tendency to sink and may become detached and founder (submerge) into the mantle. The crustal root undergoes metamorphic reactions that result in a significant increase in density and may cause the root to also founder into the mantle. Both processes result in a significant injection of heat from the compensatory upwelling of asthenosphere, which is an important contribution to the rise of the mountains.

Continental collisions produce lofty landlocked mountain ranges such as the Himalayas. Much later, after these ranges have been largely leveled by erosion, it is possible that the original contact, or suture, may be exposed.

See more: Let'S Discuss The New Form Of The Exotic Dragon Spells, American Art Pottery: The Robert A

The balance between creation and destruction on a global scale is demonstrated by the expansion of the Atlantic Ocean by seafloor spreading over the past 200 million years, compensated by the contraction of the Pacific Ocean, and the consumption of an entire ocean between India and Asia (the Tethys Sea). The northward migration of India led to collision with Asia some 40 million years ago. Since that time India has advanced a further 2,000 km (1,250 miles) beneath Asia, pushing up the Himalayas and forming the Plateau of Tibet. Pinned against stable Siberia, China and Indochina were pushed sideways, resulting in strong seismic activity thousands of kilometres from the site of the continental collision.